Tools | Bookmark & Share | Make MrWhy My Homepage
MrWhy.com
Go
MrWhy.com » Videos » Multiple Kernel Learning for Efficient Conformal Predictions
Multiple Kernel Learning for Efficient Conformal Predictions
Multiple Kernel Learning for Efficient Conformal Predictions
Report
Multiple Kernel Learning for Efficient Conformal Predictions
The Conformal Predictions framework is a recent development in machine learning to associate reliable measures of confidence with results in classification and regression. This framework is founded on the principles of algorithmic randomness (Kolmogorov complexity), transductive inference and hypothesis testing. While the formulation of the framework guarantees validity, the efficiency of the framework depends greatly on the choice of the classifier and appropriate kernel functions or parameters. While this framework has extensive potential to be useful in several applications, the lack of efficiency can limit its usability. In this paper, we propose a novel Multiple Kernel Learning (MKL) methodology to maximize efficiency in the CP framework. This method is validated using the k-Nearest Neighbors classifier on a cardiac patient dataset, and our results show promise in using MKL to obtain efficient conformal predictors that can be practically useful.
Channel: VideoLectures
Category: Educational
Video Length: 0
Date Found: January 15, 2011
Date Produced: January 12, 2011
View Count: 0
 
MrWhy.com Special Offers
1
2
3
4
5
 
About Us: About MrWhy.com | Advertise on MrWhy.com | Contact MrWhy.com | Privacy Policy | MrWhy.com Partners
Answers: Questions and Answers | Browse by Category
Comparison Shopping: Comparison Shopping | Browse by Category | Top Searches
Shop eBay: Shop eBay | Browse by Category
Shop Amazon: Shop Amazon | Browse by Category
Videos: Video Search | Browse by Category
Web Search: Web Search | Browse by Searches
Copyright © 2011 MrWhy.com. All rights reserved.