|
Slice sampling covariance hyperparameters of latent
|
Slice sampling covariance hyperparameters of latent
The Gaussian process (GP) is a popular way to specify dependencies between random variables in a probabilistic model. In the Bayesian framework the covariance structure can be specified using unknown hyperparameters. Integrating over these hyperparameters considers different possible explanations for the data when making predictions. This integration is often performed using Markov chain Monte Carlo (MCMC) sampling. However, with non-Gaussian observations standard hyperparameter sampling approaches require careful tuning and may converge slowly. In this paper we present a slice sampling approach that requires little tuning while mixing well in both strong- and weak-data regimes.
Video Length: 0
Date Found: January 13, 2011
Date Produced: January 12, 2011
View Count: 2
|
|
|
|
|
I got punched by an old guy, for farting near his wife. Read MoreComic book creator Stan Lee talks the future of the medium in the digital age. Panelists Zachary... Read MoreThe U.S. launch of Spotify is still on music lovers' minds. Join Zachary Levi, from NBC’s... Read MoreTuesday: Rupert Murdoch testifies before Parliament on the hacking scandal that brought down "News... Read MoreAfter a long slump, the home construction industry may be showing signs of life. But as Bill... Read More | 1 2 3 4 5 |
|
|
|