|
Learning Concept Mappings from Instance Similarity
|
Learning Concept Mappings from Instance Similarity
Finding mappings between compatible ontologies is an important but difficult open problem. Instance-based methods for solving this problem have the advantage of focusing on the most active parts of the ontologies and reflect concept semantics as they are actually being used. However such methods have not at present been widely investigated in ontology mapping, compared to linguistic and structural techniques. Furthermore, previous instance-based mapping techniques were only applicable to cases where a substantial set of instances was available that was doubly annotated with both vocabularies. In this paper we approach the mapping problem as a classification problem based on the similarity between instances of concepts. This has the advantage that no doubly annotated instances are required, so that the method can be applied to any two corpora annotated with their own vocabularies. We evaluate the resulting classifiers on two real-world use cases, one with homogeneous and one with heterogeneous instances. The results illustrate the efficiency and generality of this method.
Video Length: 0
Date Found: October 12, 2010
Date Produced: November 24, 2008
View Count: 0
|
|
|
|
|
I got punched by an old guy, for farting near his wife. Read MoreComic book creator Stan Lee talks the future of the medium in the digital age. Panelists Zachary... Read MoreThe U.S. launch of Spotify is still on music lovers' minds. Join Zachary Levi, from NBC’s... Read MoreTuesday: Rupert Murdoch testifies before Parliament on the hacking scandal that brought down "News... Read MoreAfter a long slump, the home construction industry may be showing signs of life. But as Bill... Read More | 1 2 3 4 5 |
|
|
|