|
The Multidimensional Wisdom of Crowds
|
The Multidimensional Wisdom of Crowds
Distributing labeling tasks among hundreds or thousands of annotators is an increasingly important method for annotating large datasets. We present a method for estimating the underlying value (e.g. the class) of each image from (noisy) annotations provided by multiple annotators. Our method is based on a model of the image formation and annotation process. Each image has different characteristics that are represented in an abstract Euclidean space. Each annotator is modeled as a multidimensional entity with variables representing competence, expertise and bias. This allows the model to discover and represent groups of annotators that have different sets of skills and knowledge, as well as groups of images that differ qualitatively. We find that our model predicts ground truth labels on both synthetic and real data more accurately than state of the art methods. Experiments also show that our model, starting from a set of binary labels, may discover rich information, such as different "schools of thought" amongst the annotators, and can group together images belonging to separate categories.
Video Length: 0
Date Found: January 15, 2011
Date Produced: January 12, 2011
View Count: 0
|
|
|
|
|
I got punched by an old guy, for farting near his wife. Read MoreComic book creator Stan Lee talks the future of the medium in the digital age. Panelists Zachary... Read MoreThe U.S. launch of Spotify is still on music lovers' minds. Join Zachary Levi, from NBC’s... Read MoreTuesday: Rupert Murdoch testifies before Parliament on the hacking scandal that brought down "News... Read MoreAfter a long slump, the home construction industry may be showing signs of life. But as Bill... Read More | 1 2 3 4 5 |
|
|
|