|
Learning for Control from Multiple Demonstrations
|
Learning for Control from Multiple Demonstrations
We consider the problem of learning to follow a desired trajectory when given a small number of demonstrations from a sub-optimal expert. We present an algorithm that (i) extracts the---initially unknown---desired trajectory from the sub-optimal expert’s demonstrations and (ii) learns a local model suitable for control along the learned trajectory. We apply our algorithm to the problem of autonomous helicopter flight. In all cases, the autonomous helicopter's performance exceeds that of our expert helicopter pilot's demonstrations. Even stronger, our results significantly extend the state-of-the-art in autonomous helicopter aerobatics. In particular, our results include the first autonomous tic-tocs, loops and hurricane, vastly superior performance on previously performed aerobatic maneuvers (such as in-place flips and rolls), and a complete airshow, which requires autonomous transitions between these and various other maneuvers.
Video Length: 0
Date Found: October 13, 2010
Date Produced: August 12, 2008
View Count: 0
|
|
|
|
|
I got punched by an old guy, for farting near his wife. Read MoreComic book creator Stan Lee talks the future of the medium in the digital age. Panelists Zachary... Read MoreThe U.S. launch of Spotify is still on music lovers' minds. Join Zachary Levi, from NBC’s... Read MoreTuesday: Rupert Murdoch testifies before Parliament on the hacking scandal that brought down "News... Read MoreAfter a long slump, the home construction industry may be showing signs of life. But as Bill... Read More | 1 2 3 4 5 |
|
|
|