Tools | Bookmark & Share | Make MrWhy My Homepage
MrWhy.com
Go
MrWhy.com » Videos » Distributed Markov chain Monte Carlo
Distributed Markov chain Monte Carlo
Distributed Markov chain Monte Carlo
Report
Distributed Markov chain Monte Carlo
We consider the design of Markov chain Monte Carlo (MCMC) methods for large-scale, distributed, heterogeneous compute facilities, with a focus on synthesising sample sets across multiple runs performed in parallel. While theory suggests that many independent Markov chains may be run and their samples pooled, the well-known practical problem of quasi-ergodicity, or poor mixing, frustrates this otherwise simple approach. Furthermore, without some mechanism for hastening the convergence of individual chains, overall speedup from parallelism is limited by the portion of each chain to be discarded as burn-in. Existing multiple-chain methods, such as parallel tempering and population MCMC, use a synchronous exchange of samples to expedite convergence. This work instead proposes mixing in an additional independent proposal, representing some hitherto best estimate or summary of the posterior, and cooperatively adapting this across chains. Such adaptation can be asynchronous, increases the ensemble’s robustness to quasi-ergodic behaviour in constituent chains, and may improve overall tolerance to fault.
Channel: VideoLectures
Category: Educational
Video Length: 0
Date Found: January 15, 2011
Date Produced: January 13, 2011
View Count: 0
 
MrWhy.com Special Offers
1
2
3
4
5
 
About Us: About MrWhy.com | Advertise on MrWhy.com | Contact MrWhy.com | Privacy Policy | MrWhy.com Partners
Answers: Questions and Answers | Browse by Category
Comparison Shopping: Comparison Shopping | Browse by Category | Top Searches
Shop eBay: Shop eBay | Browse by Category
Shop Amazon: Shop Amazon | Browse by Category
Videos: Video Search | Browse by Category
Web Search: Web Search | Browse by Searches
Copyright © 2011 MrWhy.com. All rights reserved.