Tools | Bookmark & Share | Make MrWhy My Homepage
MrWhy.com
Go
MrWhy.com » Videos » The Catch-Up Phenomenon in Bayesian Inference
The Catch-Up Phenomenon in Bayesian Inference
The Catch-Up Phenomenon in Bayesian Inference
Report
The Catch-Up Phenomenon in Bayesian Inference
Standard Bayesian model selection/averaging sometimes learn too slowly: there exist other learning methods that lead to better predictions based on less data. We give a novel analysis of this "catch-up" phenomenon. Based on this analysis, we propose the switching method, a modification of Bayesian model averaging that never learns slower, but sometimes learns much faster than Bayes. The method is related to expert-tracking algorithms developed in the COLT literature, and has time complexity comparable to Bayes.  The switching method resolves a long-standing debate in statistics, known as the AIC-BIC dilemma: model selection/averaging methods like BIC, Bayes, and MDL are consistent (they eventually infer the correct model) but, when used for prediction, the rate at which predictions improve can be suboptimal. Methods like AIC and leave-one-out cross-validation are inconsistent but typically converge at the optimal rate. Our method is the first that provably achieves both. Experiments with nonparametric density estimation confirm that these large-sample theoretical results also hold in practice in small samples.
Channel: VideoLectures
Category: Educational
Video Length: 0
Date Found: October 13, 2010
Date Produced: July 30, 2008
View Count: 0
 
MrWhy.com Special Offers
1
2
3
4
5
 
About Us: About MrWhy.com | Advertise on MrWhy.com | Contact MrWhy.com | Privacy Policy | MrWhy.com Partners
Answers: Questions and Answers | Browse by Category
Comparison Shopping: Comparison Shopping | Browse by Category | Top Searches
Shop eBay: Shop eBay | Browse by Category
Shop Amazon: Shop Amazon | Browse by Category
Videos: Video Search | Browse by Category
Web Search: Web Search | Browse by Searches
Copyright © 2011 MrWhy.com. All rights reserved.