Tools | Bookmark & Share | Make MrWhy My Homepage
MrWhy.com
Go
MrWhy.com » Videos » Planning in Information Space with Macro-actions
Planning in Information Space with Macro-actions
Planning in Information Space with Macro-actions
Report
Planning in Information Space with Macro-actions
Active learning can be framed as a planning in information space problem: the goal is to learn about the world by taking actions that improve expected performance. In some domains, planning far into the future is prohibitively expensive and the agent is not able to discover effective information-gathering plans. However, by using macro-actions consisting of fixed-length open-loop policies, the policy class considered during planning is explicitly restricted in return for computational gains that allow much deeper-horizon forward search. In a certain subset of domains, it is possible to analytically compute the distribution over posterior beliefs that results from a single macro-action; this distribution captures any observation sequence that could occur during the macro-action, and allows significant additional computational savings. I will show performance on two simulation experiments: a standard exploration domain and a UAV search domain.
Channel: VideoLectures
Category: Educational
Video Length: 0
Date Found: November 14, 2010
Date Produced: November 08, 2010
View Count: 0
 
MrWhy.com Special Offers
1
2
3
4
5
 
About Us: About MrWhy.com | Advertise on MrWhy.com | Contact MrWhy.com | Privacy Policy | MrWhy.com Partners
Answers: Questions and Answers | Browse by Category
Comparison Shopping: Comparison Shopping | Browse by Category | Top Searches
Shop eBay: Shop eBay | Browse by Category
Shop Amazon: Shop Amazon | Browse by Category
Videos: Video Search | Browse by Category
Web Search: Web Search | Browse by Searches
Copyright © 2011 MrWhy.com. All rights reserved.