|
MrWhy.com » Videos » Learning from Labeled and Unlabelled Data: When the Smoothness Assumption Holds |
|
|
Learning from Labeled and Unlabelled Data: When the Smoothness Assumption Holds
|
Learning from Labeled and Unlabelled Data: When the Smoothness Assumption Holds
During recent years, there has been a growing interest in learning algorithms capable of utilizing both labeled and unlabeled data for prediction tasks. The reason for this attention is the cost of assigning labels which can be very high for large datasets. Two main settings have been proposed in the literature to exploit information contained in both labeled and unlabeled data: the semi-supervised setting and the transductive setting. The former is a type of inductive learning, since the learned function is used to make predictions on any possible observation. The latter asks for less, since it is only interested in making predictions for a set of unlabeled data known at the learning time. By focusing on the transductive setting, we discuss the underlying smoothness assumption and its validity for several data types characterized by (positive) autocorrelation, such as spatial and networked data. In particular, we report of the application of transductive learning approaches to these data types and results obtained in domains characterized by scarcity of labelled data. Finally, we discuss the transductive setting in the more general perspective of relational data mining.
Video Length: 0
Date Found: March 12, 2011
Date Produced: March 11, 2011
View Count: 1
|
|
|
|
|
I got punched by an old guy, for farting near his wife. Read MoreComic book creator Stan Lee talks the future of the medium in the digital age. Panelists Zachary... Read MoreThe U.S. launch of Spotify is still on music lovers' minds. Join Zachary Levi, from NBC’s... Read MoreTuesday: Rupert Murdoch testifies before Parliament on the hacking scandal that brought down "News... Read MoreAfter a long slump, the home construction industry may be showing signs of life. But as Bill... Read More | 1 2 3 4 5 |
|
|
|