Tools | Bookmark & Share | Make MrWhy My Homepage
MrWhy.com
Go
MrWhy.com » Videos » Multi-View Clustering via Canonical Correlation Analysis
Multi-View Clustering via Canonical Correlation Analysis
Multi-View Clustering via Canonical Correlation Analysis
Report
Multi-View Clustering via Canonical Correlation Analysis
Clustering data in high dimensions is believed to be a hard problem in general. A number of efficient clustering algorithms developed in recent years address this problem by projecting the data into a lower dimensional subspace, e.g. via Principal Components Analysis (PCA) or random projections, before clustering. Here, we consider constructing such projections using multiple views of the data, via Canonical Correlation Analysis (CCA). Under the assumption that the views are uncorrelated given the cluster label, we show that the separation conditions required for the algorithm to be successful are significantly weaker than prior results in the literature. We provide results for mixtures of Gaussians and mixtures of log concave distributions. We also provide empirical support from audio-visual speaker clustering (where we desire the clusters to correspond to speaker ID) and from hierarchical Wikipedia document clustering (where one view is the words in the document and the other is the link structure).
Channel: VideoLectures
Category: Educational
Video Length: 0
Date Found: October 13, 2010
Date Produced: August 26, 2009
View Count: 0
 
MrWhy.com Special Offers
1
2
3
4
5
 
About Us: About MrWhy.com | Advertise on MrWhy.com | Contact MrWhy.com | Privacy Policy | MrWhy.com Partners
Answers: Questions and Answers | Browse by Category
Comparison Shopping: Comparison Shopping | Browse by Category | Top Searches
Shop eBay: Shop eBay | Browse by Category
Shop Amazon: Shop Amazon | Browse by Category
Videos: Video Search | Browse by Category
Web Search: Web Search | Browse by Searches
Copyright © 2011 MrWhy.com. All rights reserved.