|
MrWhy.com » Videos » Multi-View Clustering via Canonical Correlation Analysis |
|
|
Multi-View Clustering via Canonical Correlation Analysis
|
Multi-View Clustering via Canonical Correlation Analysis
Clustering data in high dimensions is believed to be a hard problem in general. A number of efficient clustering algorithms developed in recent years address this problem by projecting the data into a lower dimensional subspace, e.g. via Principal Components Analysis (PCA) or random projections, before clustering. Here, we consider constructing such projections using multiple views of the data, via Canonical Correlation Analysis (CCA). Under the assumption that the views are uncorrelated given the cluster label, we show that the separation conditions required for the algorithm to be successful are significantly weaker than prior results in the literature. We provide results for mixtures of Gaussians and mixtures of log concave distributions. We also provide empirical support from audio-visual speaker clustering (where we desire the clusters to correspond to speaker ID) and from hierarchical Wikipedia document clustering (where one view is the words in the document and the other is the link structure).
Video Length: 0
Date Found: October 13, 2010
Date Produced: August 26, 2009
View Count: 0
|
|
|
|
|
I got punched by an old guy, for farting near his wife. Read MoreComic book creator Stan Lee talks the future of the medium in the digital age. Panelists Zachary... Read MoreThe U.S. launch of Spotify is still on music lovers' minds. Join Zachary Levi, from NBC’s... Read MoreTuesday: Rupert Murdoch testifies before Parliament on the hacking scandal that brought down "News... Read MoreAfter a long slump, the home construction industry may be showing signs of life. But as Bill... Read More | 1 2 3 4 5 |
|
|
|