Tools | Bookmark & Share | Make MrWhy My Homepage
MrWhy.com
Go
MrWhy.com » Videos » Graph-Valued Regression
Graph-Valued Regression
Graph-Valued Regression
Report
Graph-Valued Regression
Undirected graphical models encode in a graph G the dependency structure of a random vector Y. In many applications, it is of interest to model Y given another random vector X as input. We refer to the problem of estimating the graph G(x) of Y conditioned on X=x as "graph-valued regression". In this paper, we propose a semiparametric method for estimating G(x) that builds a tree on the X space just as in CART (classification and regression trees), but at each leaf of the tree estimates a graph. We call the method "Graph-optimized CART", or Go-CART. We study the theoretical properties of Go-CART using dyadic partitioning trees, establishing oracle inequalities on risk minimization and tree partition consistency. We also demonstrate the application of Go-CART to a meteorological dataset, showing how graph-valued regression can provide a useful tool for analyzing complex data.
Channel: VideoLectures
Category: Educational
Video Length: 0
Date Found: March 26, 2011
Date Produced: March 25, 2011
View Count: 0
 
MrWhy.com Special Offers
1
2
3
4
5
 
About Us: About MrWhy.com | Advertise on MrWhy.com | Contact MrWhy.com | Privacy Policy | MrWhy.com Partners
Answers: Questions and Answers | Browse by Category
Comparison Shopping: Comparison Shopping | Browse by Category | Top Searches
Shop eBay: Shop eBay | Browse by Category
Shop Amazon: Shop Amazon | Browse by Category
Videos: Video Search | Browse by Category
Web Search: Web Search | Browse by Searches
Copyright © 2011 MrWhy.com. All rights reserved.