|
|
Graphical Models
In the last decade probabilistic graphical models — in particular Bayes networks and Markov networks -- became very popular as tools for structuring uncertain knowledge about a domain of interest and for building knowledge-based systems that allow sound and efficient inferences about this domain.  The lecture gives a brief introduction into the core ideas underlying graphical models, starting from their relational counterparts and highlighting the relation between independence and decomposition. Furthermore, the basics of model construction and evidence propagation are discussed, with an emphasis on join/junction tree propagation. A substantial part of the lecture is then devoted to learning graphical models from data, in which quantitative learning (parameter estimation) as well as the more complex qualitative or structural learning (model selection) are studied.
Video Length: 1714
Date Found: October 13, 2010
Date Produced: October 05, 2007
View Count: 0
|
|
|
|
|
I got punched by an old guy, for farting near his wife. Read MoreComic book creator Stan Lee talks the future of the medium in the digital age. Panelists Zachary... Read MoreThe U.S. launch of Spotify is still on music lovers' minds. Join Zachary Levi, from NBC’s... Read MoreTuesday: Rupert Murdoch testifies before Parliament on the hacking scandal that brought down "News... Read MoreAfter a long slump, the home construction industry may be showing signs of life. But as Bill... Read More | 1 2 3 4 5 |
|
|
|