|
MrWhy.com » Videos » Dirichlet Processes and Nonparametric Bayesian Modelling |
|
|
Dirichlet Processes and Nonparametric Bayesian Modelling
|
Dirichlet Processes and Nonparametric Bayesian Modelling
Bayesian modeling is a principled approach to updating the degree of belief in a hypothesis given prior knowledge and given available evidence. Both prior knowledge and evidence are combined using Bayes' rule to obtain the a posterior hypothesis. In most cases of interest to machine learning, the prior knowledge is formulated as a prior distribution over parameters and the evidence corresponds to the observed data. By applying Bayes' formula we can perform inference about new data. Having observed sufficient data, the a posteriori parameter distribution is increasingly concentrated and the influence of the prior distribution diminishes. Under some assumptions (in particular that the likelihood model is correct and that the true parameters have positive a priori probability), the a posteriori distribution converges to a point distribution located at the true parameters. The challenges in Bayesian modeling are, first, to find suitable application specific statistical models and, second, to (approximately) solve the resulting inference equations.
Video Length: 2103
Date Found: October 13, 2010
Date Produced: February 25, 2007
View Count: 1
|
|
|
|
|
I got punched by an old guy, for farting near his wife. Read MoreComic book creator Stan Lee talks the future of the medium in the digital age. Panelists Zachary... Read MoreThe U.S. launch of Spotify is still on music lovers' minds. Join Zachary Levi, from NBC’s... Read MoreTuesday: Rupert Murdoch testifies before Parliament on the hacking scandal that brought down "News... Read MoreAfter a long slump, the home construction industry may be showing signs of life. But as Bill... Read More | 1 2 3 4 5 |
|
|
|