|
Generalized Principal Component Analysis (GPCA)
|
Generalized Principal Component Analysis (GPCA)
Data segmentation is usually though of as a chicken-and-egg problem. In order to estimate a mixture of models one needs to first segment the data, and in order to segment the data one needs to know the model parameters. Therefore, data segmentation is usually solved in two stages 1. Data clustering and 2. Model fitting.   Other iterative methods use, e.g. the Expectation Maximization (EM) algorithm. This talk will show that for a wide class of segmentation problems with multi-linear structure (including clustering subspaces of unknown and varying dimensions), the chicken-and-egg dilemma can be tackled as follows: 1. Fit a set of polynomials to all data points, without clustering the data 2. Obtain the model parameters for each group from the derivatives of these polynomials. Applications of GPCA to image/video/motion segmentation, face clustering, and identification of hybrid dynamical models systems will also be presented.
Video Length: 3537
Date Found: October 13, 2010
Date Produced: February 25, 2007
View Count: 0
|
|
|
|
|
I got punched by an old guy, for farting near his wife. Read MoreComic book creator Stan Lee talks the future of the medium in the digital age. Panelists Zachary... Read MoreThe U.S. launch of Spotify is still on music lovers' minds. Join Zachary Levi, from NBC’s... Read MoreTuesday: Rupert Murdoch testifies before Parliament on the hacking scandal that brought down "News... Read MoreAfter a long slump, the home construction industry may be showing signs of life. But as Bill... Read More | 1 2 3 4 5 |
|
|
|