|
MrWhy.com » Videos » Linear Complementarity for Regularized Policy Evaluation and Improvement |
|
|
Linear Complementarity for Regularized Policy Evaluation and Improvement
|
Linear Complementarity for Regularized Policy Evaluation and Improvement
Recent work in reinforcement learning has emphasized the power of L1 regularization to perform feature selection and prevent overfitting. We propose formulating the L1 regularized linear fixed point problem as a linear complementarity problem (LCP). This formulation offers several advantages over the LARS-inspired formulation, LARS-TD. The LCP formulation allows the use of efficient off-the-shelf solvers, leads to a new uniqueness result, and can be initialized with starting points from similar problems (warm starts). We demonstrate that warm starts, as well as the efficiency of LCP solvers, can speed up policy iteration. Moreover, warm starts permit a form of modified policy iteration that can be used to approximate a "greedy" homotopy path, a generalization of the LARS-TD homotopy path that combines policy evaluation and optimization.
Video Length: 0
Date Found: January 15, 2011
Date Produced: January 12, 2011
View Count: 0
|
|
|
|
|
I got punched by an old guy, for farting near his wife. Read MoreComic book creator Stan Lee talks the future of the medium in the digital age. Panelists Zachary... Read MoreThe U.S. launch of Spotify is still on music lovers' minds. Join Zachary Levi, from NBC’s... Read MoreTuesday: Rupert Murdoch testifies before Parliament on the hacking scandal that brought down "News... Read MoreAfter a long slump, the home construction industry may be showing signs of life. But as Bill... Read More | 1 2 3 4 5 |
|
|
|